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ABSTRACT

Undersampled images, such as those produced by the HST WFPC-2, misrepresent

�ne-scale structure intrinsic to the astronomical sources being imaged. Analyzing such

images is di�cult on scales close to their resolution limits and may produce erroneous

results. A set of \dithered" images of an astronomical source generally contains more

information about its structure than any single undersampled image, however, and

may permit reconstruction of a \superimage" with Nyquist sampling. I present a

tutorial on a method of image reconstruction that builds a superimage from a complex

linear combination of the Fourier transforms of a set of undersampled dithered images.

This method works by algebraically eliminating the high order satellites in the periodic

transforms of the aliased images. The reconstructed image is an exact representation

of the data-set with no loss of resolution at the Nyquist scale. The algorithm is directly

derived from the theoretical properties of aliased images and involves no arbitrary

parameters, requiring only that the dithers are purely translational and constant in

pixel-space over the domain of the object of interest. I show examples of its application

to WFC and PC images. I argue for its use when the best recovery of point sources or

morphological information at the HST di�raction limit is of interest.

Subject headings: image processing

1. Introduction

It's nice to work with well-sampled astronomical images. A well-sampled image can be readily

resampled to various scales, orientations, or more complex geometries without loss of information.

Its spatial resolution is well-understood, permitting a clear analysis of the relative contributions of

information and noise. Further, many image processing algorithms will only work on well-sampled

1The National Optical Astronomy Observatories are operated by the Association of Universities for Research in

Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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data. In some cases, however, it's not practical or even desirable to obtain well-sampled images.

Given detectors with a �nite number of pixels and signi�cant readout noise, one may prefer to

trade-o� resolution for increased �eld size or photometric sensitivity. Both considerations were

central to the design of the HST WFPC-1 and WFPC-2 cameras, to give examples of instruments

that produce undersampled astronomical images. WFPC-2 in particular has generated the

largest library of high-resolution optical astronomical images to date, but ironically the severe

undersampling in the WFC system, and the still less than critical sampling of the PC at all but

the reddest wavelengths, limit the resolution of HST observations as much as the telescope optics,

themselves.

There is no magic that can undo the undersampling in a single image; analysis of such

data always requires respect for their peculiarities. At the same time, it may be possible to

obtain additional observations with the same camera system that contain information lost in the

original images. For example, if the camera can be o�set by a fraction of a pixel over a sequence

of exposures or \dithered," one can observe how the structure of objects in the image varies

with respect to their positions on the pixel-grid, and thus recover details not contained in any

single image. This suggests that one might construct a well-sampled super-image from a set of

undersampled, but dithered images.

In general, when the size of a pixel is important with respect to the intrinsic point-spread

function (PSF), the image as observed is

I(x; y) = O(x; y) � P (x; y) � �(x; y); (1)

where O is the intrinsic projected appearance of the astronomical �eld being imaged, P is the

PSF due to the telescope and camera optics, and � is the spatial form of the pixel itself, (which

is often assumed to be a uniform square, although this need not be the case), and � means

convolution. Both P and � limit the resolution of I and thus implicitly specify the minimum

sampling requirements | a dilemma if � is too big, since it sets what the sampling really is,

regardless of what's needed. If the astronomical scene and camera are time-stable, however,

dithering the camera allows proper sampling of the �eld convolved with the pixel response as well

as the PSF, to be obtained. If the camera is pointed on a �ne and regular n� n grid of sub-pixel

steps, where n is the number of substeps within the original large pixel, then the images can

be simply interleaved into a super-image that has small pixels equal to the dither step-size. If

the step-size is small enough, the super-image will be critically sampled. A simple way to view

this is to consider an image consisting of the astronomical �eld just convolved with the PSF due

to the optics alone. The sampling would be done on pixels equal to the size of the dither step,

chosen to be �ne enough to ensure critical sampling. The image is then blurred by the original

pixel response. Drawing every nth pixel in x and y clearly recreates one of the dithered images as

actually created by the camera. Therefore, conversely interleaving the dithered images creates the

well-sampled super-image.

In practice, however, it may not be possible to step the camera in a regular pattern. Sub-pixel
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dithers have been used in many WFPC-2 programs, for example, but were often not executed with

enough precision to fall on a regular pattern; simple interlacing of the image-set cannot be done in

such cases. This problem is critical for the Hubble Deep Field (HDF) observations (Williams et al.

1996). A regular dither was speci�ed, but did not actually occur.

To solve the problem of combining images with an irregular dither pattern, a Drizzle-algorithm

was developed (Williams et al. 1996; Fruchter & Hook 1998) that works by simply dropping or

\drizzling" the pixels in any single image onto a �ner grid, o�setting the image by the actual

sub-pixel step obtained, slicing up its pixels as they fall on the �ner grid. The Drizzle algorithm

worked well, producing the now famous well-sampled full-color image of the HDF. The Drizzle

algorithm is appealing, as it is intuitive | one is just shifting and overlapping the images on a

�ne grid, shrinking the original pixels small enough so as to minimize any blurring associated with

forcing the pixels into the new grid, but keeping them big enough so that there are no \holes" of

empty data in the new super image. Further, because Drizzle works in the spatial domain, it's

easy to correct for cosmic ray events, hot pixels, or any other data missing in any single images,

as well as correcting for any geometric distortion. Development of Drizzle represents a signi�cant

improvement in the software available to astronomers for analyzing undersampled images, and has

greatly improved the recovery of information from HST images.

Despite the success of Drizzle, however, it is frankly justi�ed on intuitive rather than formal

theoretical grounds, and indeed depends on two ad hoc parameters, namely the spacing of the

super-image grid and the size of the pixels to be drizzled. It also introduces its own blurring

function, �0; which statistically is about the size of the super-image pixel; in detail, the actual

resolution for any object depends on how it falls with respect to the �nal grid. Although �0 in

practice may be much smaller than �; it still may be large compared to the PSF and introduce

signi�cant blurring in its own right. These issues were indeed discussed in the context of the HDF,

and limit its deconvolution or interpretation of its power spectrum on the �nest scales.

In attempt to develop an algorithm that both mines better resolution from the data, and

stands on a solid theoretical foundation, I present a method that reconstructs a super-image from

an arbitrary set of dithered observations with no-degradation of resolution. This method is only a

modest extension to two-dimensional data of a method for recovering one-dimensional functions

from undersampled data presented by Bracewell (1978). The method works by computing the

Fourier transform of the super-image as a linear combination of the transforms of the individual

images; the aliased components are eliminated algebraically. I have also extended the method to

estimate the super-image when it is actually overdetermined by the dithered observations. None

of this is particularly complex, and not surprizingly, the professional image processing literature

already contains discussions of this method (see Tsai & Huang 1984, or Kim et al. 1990). However,

given the strong interest in using dithers in the context of HST imaging, I considered it worthwhile

to present this paper as a tutorial on the method of Fourier algebraic reconstruction and explore

its use in the context of HST observations.
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2. The Theory of Reconstructing an Image From Aliased Data-sets

2.1. The Sampling of a 1-D Function

To understand how to reconstruct an image from undersampled data, I start by considering

the e�ects of sampling on a 1-D function, f(x): For reconstruction to work, f(x) must be

band-limited, so that its Fourier transform,

f(x) = F (u) =

Z
1

�1

f(x)e�2�ixudx; (2)

is non-zero only for �uc < u < uc; where uc is the critical frequency. If x is expressed in terms

of pixels, then sampling at every integer pixel is su�cient provided that uc < 1=2: This can be

understood by considering the Fourier transform of the sampled function, The sampling of f(x) is

equivalent to multiplying it by a shah-function,

III(ax) �
1

jaj

+1X
n=�1

�

�
x�

n

a

�
; (3)

where a = 1 for the speci�c case of integer-pixel sampling. The Fourier transform of the sampled

function is then,

f(x) � III(x) = F (u) � III(u);

=
+1X

n=�1

F (u� n); (4)

where I have used the fact that the transform of a shah-function is itself a shah-function. As

is well-known, the Fourier transform of a sampled function is periodic, repeating over the entire

frequency domain. If f(x) is band-limited, however, none of the copies or satellites of F (u) overlap.

The satellites are spaced at each integer-step in u; but the requirement that uc < 1=2; means that

they also reach zero before crossing over the midpoint of the interval (Figure 1). This condition is

no longer obeyed when the sampling interval is larger than each integer pixel step. For example, if

every other pixel is sampled, then,

f(x) � III

�
x

2

�
= F (u) � III(2u);

= 2
+1X

n=�1

F

�
u�

n

2

�
: (5)

The transformed shah-function now samples at every half-integer step in the Fourier domain,

causing strong overlaps or aliasing between the satellites of F (u) (Figure 1). If f(x) is unknown,

the full extent of its transform cannot be deduced from the aliased sample, which in turn means

that the sample is itself an incomplete representation of f(x):
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0

0

Fig. 1.| This �gure schematically shows the e�ects of sampling on the Fourier power spectrum of

a continuous 1-D function. Sampling causes the power spectrum to be periodic, with the period

inversely proportional to the spatial sampling frequency. When the function is well-sampled, the

satellites occur at intervals of 2uc; or greater, where uc is the critical frequency, or the highest

frequency at which the intrinsic function has non-zero power (upper graph). With coarser sampling,

the function becomes undersampled and the satellites begin to overlap. With 2� undersampling

(bottom graph) the satellites occur at every integer multiple of uc: The total transform (dotted) is

the sum over all satellites and is severely aliased.
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2.2. Recovery of a 1-D Function

Bracewell (1978) shows that a function can be recovered from collection of undersampled

data-sets given prior knowledge of uc (as might exist given a detector pixel shape and optical

point-spread function), provided that the sampling among the various data-sets is interlaced by

some fraction of the sampling interval and that the basic sampling interval is not too sparse

compared to uc: Consider again the alternate pixel sample above (which I relabel as d0(x)). For

the fundamental interval �1=2 < u < 1=2;

D0(u) = f(x) � III

�
x

2

�
;

=
1

2

�
F (u�

1

2
) + F (u) + F (u+

1

2
)

�
: (6)

Since I have speci�ed that F (u) is band-limited to juj < 1=2; for 0 � u < 1=2;

D0(u) =
1

2

�
F (u�

1

2
) + F (u)

�
; (7)

and for �1=2 < u < 0;

D0(u) =
1

2

�
F (u) + F (u+

1

2
)

�
: (8)

Now let there be a second data set that also samples f(x) with alternate pixel spacing, but

spatially o�set from the d0(x) samples by some x0 6= 2n (one might presume 0 < x0 < 2; but this

is not required). The transform of the new data-set, dx0(x); is

Dx0(u) = f(x) � III

�
x

2
� x0

�
;

= F (u) �

�
III

�
x

2

�
� �(x� x0)

�
;

= F (u) �
�
III (2u) � e�2�iux0

�
: (9)

This reduces to

Dx0(u) =
1

2

�
F (u) + e��ix0F (u�

1

2
)

�
; 0 � u < 1=2; (10)

=
1

2

�
F (u) + e+�ix0F (u+

1

2
)

�
; �1=2 < u < 0: (11)

Note that dx0(x) is no less aliased than is d0(x); but since the overlap portion has a di�ering

phase, the transforms of the two samples can be combined to solve for the transform of f(x);

F (u) = 2
Dx0(u)� e��ix0D0(u)

1� e��ix0
; 0 � u < 1=2; (12)

= 2
Dx0(u)� e+�ix0D0(u)

1� e+�ix0
; � 1=2 < u < 0: (13)
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In other words, one can reconstruct f(x) exactly from two data-sets o�set from each other, each

undersampled by a factor two. Note that in the special case, where x0 = 1; d0(x) holds the

even-numbered pixels and dx0(x) holds the odd-numbered ones, then

F (u) = Dx0(u) +D0(u); (14)

as would be expected, since the sum in equation (4) can clearly be separated this way. With exact

interlacing, one can just add the transforms of the two individual data-sets (provided that the

transform preserves their relative phases).

2.3. Recovery of an Image

This method can be directly generalized to the case of reconstructing a 2-D image. The

shah-function becomes a 2-D regular grid of �-functions, and the two-dimensional Fourier

transform of an image is:

f(x; y) = F (u; v) =

Z
1

�1

Z
1

�1

f(x; y)e�(2�ixu+2�iyv)dx dy: (15)

If there is an observation dx1;y1(x; y) that is factor of two undersampled in both x and y (thus

having 1/4 of the pixels of the critically sampled image), and o�set by x1; y1 from the nominal

grid de�ning f(x; y); then in the domain 0 � u < 1=2; 0 � v < 1=2;

Dx1;y1(u; v) =
1

4

�
F (u; v) + e��ix1F (u�

1

2
; v)

+e��iy1F (u; v �
1

2
) + e��i(x1+y1)F (u�

1

2
; v �

1

2
)

�
: (16)

There are analogous expressions in the other three quadrants of the u; v plane; however, for

real-valued images, half of the u; v plane will simply be the complex conjugate of the other half

and thus need not be computed (see Figure 2). As can be seen, with four data-sets, each having a

unique o�set in x or y; it is again possible to eliminate the overlap contributions. This requires

solving a system of equations with complex coe�cients:

1

4

0
BBB@
1 e��ix1 e��iy1 e��i(x1+y1)

1 e��ix2 e��iy2 e��i(x2+y2)

1 e��ix3 e��iy3 e��i(x3+y3)

1 e��ix4 e��iy4 e��i(x4+y4)

1
CCCAF = D; (17)

where F is a 4-vector holding F (u; v) in the �rst position, followed by the u; v; and lastly u; v

satellites, D is a 4-vector of the transforms of the 4 undersampled data-sets. One can then invert

this matrix to �nd

F (u; v) =
4X

n=1

cnDxn;yn(u; v); (18)
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Fig. 2.| This �gure schematically shows the con�guration of the Fourier domain for reconstructing

an image with 2� 2 subsampling. For real images, Fourier transforms need only be calculated for

the semi-plane with 0 � u � 1=2; �1=2 < v � 1=2 (this presumes that the x-axis transform is

computed �rst), where the frequencies are de�ned with respect to the pixels of the reconstructed

image. Each image in the observed set is aliased, and has satellites at all integer multiples of

(u; v) = 1=2 in the Fourier domain, with each satellite having signi�cant power over �u = �1=2;

and �v = �1=2 about its central location. The �gure shows as heavy dots the central location of all

satellites that overlap with the fundamental transform centered at (u; v) = 0: Algebraic elimination

of the satellites is done in two regions, marked 1 and 2; the satellites that contribute to a given

region are those at its corners.
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where cn will be a complex coe�cient. Solution for the second quadrant is analogous | the phases

di�er only in sign, being positive when the domain of the frequency is negative. As an example,

for the special case of where the four data-sets contain the exact interlaces of integer pixels in x

and y; F and D are more simply related as:

1

4

0
BBB@

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

1
CCCAF = D; (19)

which has the solution, as expected of

F (u; v) =
4X

n=1

Dxn;yn(u; v): (20)

2.4. Recovery of an Image Overdetermined by the Data

Four images determine F (u; v); exactly, but if one actually has additional images available,

F (u; v) is overdetermined, and a least squares solution is required. This means �nding the F (u; v)

that minimizes the norm

E = k�F�D k; (21)

where, as above � is the matrix of phases. In this case, however, � is now an n� 4 matrix,

� =
1

4

0
BBB@
1 e��ix1 e��iy1 e��i(x1+y1)

1 e��ix2 e��iy2 e��i(x2+y2)
...

...
...

...

1 e��ixn e��iyn e��i(xn+yn)

1
CCCA ; (22)

where n � 4 is the number of data-sets, and D is now a vector of length n holding the data-sets;

F is still the same 4-vector. Expanding equation (21) gives

E2 = (�F�D )H (�F�D )

= FH�H�F�FH�HD�DH�F+DHD; (23)

where H denotes the Hermitian (or complex-conjugate) transpose. Minimizing E implies

F =
�
�H�

�
�1
�HD: (24)

In the case of an overdetermined situation, one might further want to weight the observations

di�erently. For example, it may not be practical to obtain exposures of identical length over

the sequence of observations, or they may have variable backgrounds. In this case, it's easy to

generalize equation (24) to include weighting, giving

F =
�
�HWTW�

�
�1
�HWTWD; (25)
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where W is an n � n matrix of weights and WT is its transpose (the weights are real-valued).

W can account for any covarience between the images, but it is most likely to be diagonal on the

presumption that the individual images will probably be independent.

2.5. Generalization to Higher Degress of Subsampling

Double sampling is likely to be su�cient to remove modest aliasing, but higher levels of

subsampling may be required when the undersampling is severe. Generalization to �ner levels of

subsampling is straight forward, if somewhat tedious. As the observed images become coarser with

respect to the reconstructed image, the aliased satellites become closer together and overlap more

severely. Algebraic elimination of the satellites requires identifying all satellites contributing power

to a given location in the Fourier domain. In practice, this means slicing the Fourier domain into

an increasingly large number of subsets. Figure 3 sketches out the structure of the Fourier domain

for 3� 3 subsampling. In the 3� 3 case, the Fourier domain is divided into six regions, with nine

di�ering satellites contributing to F in each one; at least n � 9 dithered images will be required to

�nd a solution, and � is will now be an n� 9 matrix. An important distinction between the 2� 2

and 3 � 3 cases, is that in the former, since the satellites are spaced exactly by uc; only the six

satellites that are visible within the Fourier semi-domain need be considered. In the 3 � 3 case,

the satellites are separated only by multiples of 2uc=3; thus the �rst set of satellites with their

centers actually falling outside the semi-domain will still overlap with it.

3. Implementation of the Fourier Image Reconstruction

3.1. Data-set Requirements

The present reconstruction method works only if the data satis�es a number of conditions,

the most important of which is that the intrinsic image structure remain constant over the extent

of the dithered data-taking sequence. The PSF should not vary signi�cantly in time, or if the

dither steps are large, in space as well. \Signi�cantly" in this context means variations on spatial

scales where the Fourier S=N ratio is greater than unity; bright point sources are more vulnerable

to PSF-variations than faint or more di�use sources. Bright noise spikes, hot pixels, cosmic ray

hits, or any other variable sources, must also be eliminated or repaired prior to reconstruction. A

�nal obvious requirement is that reconstruction can work only on the portions of the dither set in

common to all images; as the dither takes place, it is likely that a larger region of the sky will be

imaged than is present on any single image | subimages of the common overlap region must be

isolated prior to reconstruction.

The mathematics of the Fourier reconstruction method do not strictly require that the

angular size of the pixels be constant over the extent of any image, provided that the dither steps



{ 11 {

Fig. 3.| As for the 2 � 2 case, this �gure schematically shows the con�guration of the Fourier

domain for reconstructing an image with 3 � 3 subsampling. Again, the Fourier transforms are

calculated only for the semi-plane with 0 � u � 1=2; �1=2 < v � 1=2: Satellites now occur at all

integer multiples of (u; v) = 1=3; but each satellite still has signi�cant power over �u = �1=2; and

�v = �1=2 about its central location. The �gure shows as heavy dots the central location of all

satellites that overlap with the fundamental transform centered at (u; v) = 0: Algebraic elimination

of the satellites is now done in six regions; the satellites that contribute to a given region are the

one at its center, and the eight surrounding it.
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are small enough that they can be regarded as constant over the complete area of the images.

Images that have variations in their pixel scale large enough so that the amplitude of the dithers

(in pixels) varies signi�cantly over the extent of the image must be processed in subsets small

enough that the dithers can be regarded as constant over the angular domain selected. Lastly, the

dithers must be translational only, with no rotation.

The reader familiar with Drizzle may object that these requirements are too restrictive

for many sets of dithered data. Drizzle performs cosmic ray event and defect rejection, as well

as geometric recti�cation, when building a sub-sampled image. Drizzle is thus attractive for

the complete reduction of panoramic data sets. This issue will be discussed further in x4; but

I emphasize that the present approach is solely concerned with the speci�c task of accurate

reconstruction of a Nyquist-sampled image. Geometric recti�cation or defect rejection are

problems that can be separated from the actual reconstruction algorithm; the caveats presented

above do not necessarily prevent use of the present method if they can be addressed apart from

the reconstruction task.

Two other requirements on the data set concern the pattern and measurement of the dithers.

Ideally, the fractional portion of the dither steps (that is ignoring the integer number of pixels

stepped over) should match the nominal 2 � 2 or 3 � 3 equal sub-stepping patterns as closely as

possible; or if the problem is heavily overdetermined be at least evenly spread over the area of

a single pixel. In this case, solution of equation (25) will generate a set of complex coe�cients,

cn of nearly equal power (presuming equal weights). Formally solutions can be calculated for

any nondegenerate dither pattern; however, as the dither pattern moves away from optimal, the

images will be combined unevenly, with heavy weight being placed on those with less redundant

positions. For real images, this means that the relative noise contributed by such images will be

ampli�ed compared to others in the dither set. Noise properties of the reconstructed image will be

discussed below; in practice, excess ampli�cation of noise is only important for large departures

from an ideal pattern.

Accurate measurement of the dither steps is required to construct the � matrix. This may be

done iteratively. Initially one might use simple centroids of stars or other compact objects within

a given image to measure dither o�sets. Once a reconstructed image has been generated, it can

be cross-correlated with the individual images to re�ne the o�sets; permitting a more accurate

reconstruction to be done in a second iteration.

3.2. Computing the Reconstructed Image

Given the prepared set of dithered images and measured dither steps, computation of the

reconstructed image can proceed. In practice I have done this within the Vista image processing

system, making use of its native image arithmetic and Fourier routines, augmenting it only with a

new subroutine to construct �; and then solve for and apply cn to the Fourier transform of a given
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image.

For each image, the �rst steps are to normalize it to a common exposure level, and to then

expand it into a sparse array, spacing out the pixels by 2� or 3� as desired. Each pixel in an

input image then occupies one of the corners of a cell of 2� 2 or 3� 3 new pixels in the expanded

image, with the other n � n � 1 pixels in each cell set to zero. This actualizes each image as a

sparse III function; one can see that for exact n � n dithers, the other images would simply be

interlaced at the vacant locations.

Once an image is expanded, its Fourier transform is computed; a power spectrum at this stage

clearly shows the aliased satellites. The next step is to multiply the transform by cn, remembering

that di�erent coe�cients must be used for the various regions within the domain. The adjusted

transform is then added to the adjusted transforms of the other images. The reconstructed image

is the inverse transform of the complete sum.

One important caveat is that each the transform of each image must be multiplied by a

complex phase, exp (�2�Ki (xj + yj)) ; where (xj ; yj) is its spatial o�set from the average of the

other images, and K is the degree of subsampling. This is required because the mathematics

presented in the previous section presume a two-dimensional coordinate system anchored to the

sky, rather than the grid of the detector. In other words, as each image is expanded, initially its

III function has identical coordinates to those in the other images, with the object apparently

moving with respect to the detector coordinate system. This step resets the coordinate system to

that of the sky, correctly phasing the various III functions of the dither set.

3.3. Examples of Reconstructed Images

Figures 4 and 5 show PC and WFC PSFs reconstructed from a calibration program of

20 F555W dithered images of a �eld within the ! Cen globular cluster. The PC PSF was

reconstructed with 2 � 2 subsampling, while 3 � 3 subsampling was used for the WFC PSF.

The cores of the PSFs are now well resolved, and no \boxy" artifacts are seen as can occur in

Drizzle reconstructions (Fruchter & Hook 1998). It's also worthwhile to note the strong blurring

introduced by the WFC pixel function, �; itself. Again, the reconstruction does not recover the

intrinsic PSF due to the optics only, but the intrinsic PSF convolved with �: The PC PSF clearly

has the sharper and rounder core, while the center of the WFC PSF is strongly determined by the

pixel shape.

Figure 6 shows the power spectra at various stages in the reconstruction of the WFC PSF

to illustrate the algorithm concretely. The �nal combination of 20 images has reduced the

contribution of the aliased satellites by � 105: The �nal power spectrum also rati�es the strong

contribution of the WFC pixel to the total PSF. The shape of the spectrum is clearly boxy;

further, the central lobe is surrounded by a strong zero, which would be expected in the power

spectrum of a nearly square and uniform pixel function.
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Fig. 4.| Reconstruction of the HST PC PSF with 2�2 subsampling is shown based on 20 dithered

F555W images of a star in ! Cen. The image at left shows a linear stretch of one of the PSF images

(selected to be nearly centered on a pixel). The central image shows the reconstructed PSF with

the same intensity stretch. The last image is a logarithmic stretch (with dynamic range 3.5 in log

units) of the reconstructed PSF.

Fig. 5.| Reconstruction of the HST WFC PSF with 3 � 3 subsampling is shown based on 20

dithered F555W images of a star in ! Cen. The image at left shows a linear stretch of one of the

PSF images (selected to be nearly centered on a pixel). The central image shows the reconstructed

PSF with the same intensity stretch. The last image is a logarithmic stretch (with dynamic range

3.5 in log units) of the reconstructed PSF.
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Fig. 6.| Power spectra are shown at various stages in the reconstruction of the WFC PSF with

3 � 3 subsampling. The left image shows the power spectrum of a single PSF image expanded as

a sparse III function. The low contrast of the minima between the bright peaks of the satellites

shows the e�ects of the severe aliasing in WFC images. The middle image shows the spectrum

of the penultimate reconstruction. At this stage 19 of the 20 images have been combined and the

anking satellites have been greatly reduced in power. The right image shows the power spectrum

of the �nal reconstructed PSF | the partial combination shown in the middles has now been

completed by the addition of the last image. The display scale is identical and logarithmic (with

a range of 105) for all three spectra. The power spectra are shown for the full Fourier domain for

ease of visual interpretation, even though the transforms are computed only in a semi-plane.
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Fig. 7.| The reconstruction of the center of NGC 1023 with 2� 2 subsampling. Five F555W PC

images were used. Four of the images (shown at left) de�ne an approximate 2�2 interlace pattern;

however, the o�sets typically di�ered from the nominal 0.5 pixel steps by � 0:1 pixel (the �fth

image falls within 0.1 pixel of one of the four images shown). The stretch is linear.
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Turning to more interesting objects, Figure 7 shows the 2 � 2 reconstruction of the nucleus

of the early-type galaxy NGC 1023. Unlike the situation for the PSFs, which were highly

overdetermined, only �ve dithered images were available for NGC 1023. The dither pattern was

close to a nominal exact interlace, but the o�sets typically di�ered from the nominal 0.5 pixel by

� 0:1 pixel, thus the present method was required. This galaxy has a particularly compact center

(Lauer et al. 1995). The present observations were obtained to observe its central structure with

the best resolution available | reconstructing the image without introducing additional blurring

is thus critical. The reconstructed image clearly shows the sharp compact nucleus of NGC 1023,

but is also smooth and free from artifact; indeed this image can now be processed further with

PSF deconvolution.

Lastly, I show a 2 � 2 reconstruction of a chain-galaxy at z = 1:355 (Cohen et al. 1996)

in the Hubble Deep Field (Figure 8), along with a Drizzle reconstruction. 2 Super�cially the

two images look identical; the gross morphology is not strongly dependent on the reconstruction

algorithm. Detailed comparison shows, however, that the present reconstruction is slightly sharper

Fig. 8.| Two reconstructions of a z = 1:355 chain galaxy in the Hubble Deep Field with 2 � 2

subsampling, based on 11 F450W WFC images. The left image was done with the present Fourier

method, while the image on the right is a Drizzle reconstruction. The stretch is linear.

| the peak of the brightest knot in the image is � 7% brighter, for example. Matching the

resolution of the drizzled image requires smoothing the Fourier reconstruction with a Gaussian

with FWHM � 1 pixel (on the subsampled scale). The Fourier reconstruction does appear to

have more noise, but again this is due to the smoothing inherent in the Drizzle algorithm. The

Fourier reconstruction can be smoothed, but one of the nice things about having a well-sampled

image is that optimal �lters can be used to improve its appearance. A Weiner �lter, for example,

can be used to reject much of the noise in the present image with little e�ect on its resolution; an

2The Drizzle reconstruction shown was done with the same image set, weights, and pixel grid used for the Fourier

reconstruction, and di�ers from the Drizzle-reconstructed image of the same galaxy in the o�cial release of the HDF.
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option that is not possible with aliased images.

A more general comparison of the present method to Drizzle is complex, as the di�erence

between the two depends on the dither pattern, the size of the image set, choice of the reconstructed

pixel size, and the Drizzle drop size. For example, when the dither pattern is close to an exact

interlace, Drizzle can be con�gured to produce a simple interlaced reconstruction, while at the

opposite end of the scale, Drizzle can do simple \shift-and-add" reconstructions on the original

pixel scale, which implies highly signi�cant smoothing. In general, it appears from a number

of additional experiments that when a large image set is available, Drizzle e�ectively smooths

a perfect reconstruction with a gaussian with width of about one pixel, as in the HDF galaxy

above. For WFC PSFs, for example, the blurring can cause a 10% reduction in the ux of the

central pixel. This is not guaranteed, however; in one WFC PSF experiment with only four nearly

exactly interlaced images, Drizzle produced a result that was apparently sharper than the Fourier

reconstruction. Close examination, however, showed that the Drizzle result was still aliased;

aliasing can cause features to be arti�cially sharpened as well as broadened. Further comparison

of the Fourier method to Drizzle is thus best done in a context speci�c to the scienti�c problem at

hand.

3.4. Noise in the Reconstructed Image

As alluded to in x3:1; the noise level in the reconstructed image depends on how well the

dither pattern matches an ideal interlace pattern. For N images, the solutions presented in

equations (24) or (25) reduce to a set of complex coe�cients fcng relating F (u; v) to the data, as

in the exact solution shown in equation (18). On the presumption that the noise from image to

image is uncorrelated, then the average power in noise in the reconstructed image is simply

�F =

 
NX
n=1

c�ncn�
2
n

!1=2

; (26)

where �n is the noise power in image n: With a nearly ideal dither pattern (and equally-weighted

data), (c�ncn)
1=2 � K2=N; where K is the degree of subsampling; the noise level is as expected

for the simple addition of N images. As the dither pattern becomes less ideal, however, unequal

weight is placed on the images, depending on the uniqueness of their positions. Highly redundant

images will have small coe�cients, while more isolated images contribute relatively higher power.

The linear combination of the images still produces an exact solution for the reconstructed image,

but because the noise is incoherent from image to image it may be ampli�ed in the �nal image,

relative to its level in the ideal case. Equation (26) allows the noise in the reconstructed image to

be calculated in advance for any particular dither pattern.

Figure 9 gives shows how the noise level in the reconstructed image varies as the dither

pattern moves away from the ideal interlace for two examples of 2� 2 subsampling. In these tests,
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Fig. 9.| Simulations of the relative ampli�cation of noise as a function of the departure of the

dither pattern from a perfect interlace are shown. The departure is parameterized as a normal

distribution of random o�sets with the standard deviation speci�ed in original pixels. The solid

curve and points show the case for when only four images are used in the reconstruction. The

dashed-line and open symbols show the simulations done with nine input images.
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variations in the dither pattern were treated as random gaussian errors about the exact interlace.

For a given standard deviation of the random o�set, several simulated image reconstructions were

computed. For the example with only four images, there is no redundant information, and the

noise level depends strongly on the particulars of the dither pattern once excursions from the

exact interlace become large. For nine images the reconstruction is more stable to departures from

the ideal pattern, the �nal noise level showing less large excursions. The real importance of this

demonstration, however, is to show that the noise level rises only slowly above its ideal for small

errors in the dither pattern. Experience with WFPC-2, for example, shows that typical dithering

errors (�< 0:1 PC pixel) will give results within the regime of modest noise ampli�cation.

4. Discussion and Summary

As noted in the introduction, my interest in the Fourier reconstruction method presented here

stemmed from a strong desire to avoid the random blurring, �0; that Drizzle may introduce into

the reconstructed image. The present method permits exact reconstruction of the superimage,

with no blurring at the Nyquist scale, nor requires any arbitrary decisions or parameters to control

the form of the reconstructed image. One might object that the degree of subsampling selected

is such a parameter; however, it is really speci�ed by the intrinsic spatial scale of the Nyquist

frequency. A Nyquist-sampled image can be resampled at �ner scales without loss of information

content or introduction of artifact | images generated at various subsampling scales past the

Nyquist scale are essentially equivalent representations of the image.

The present algorithm places several preconditions on the data, thus it is worthwhile to

consider 1) the optimal data-taking strategy for reconstructing images from dithered data-sets,

and 2) how to best perform the related tasks of artifact rejection, geometric recti�cation, and so

on. The mathematics of the Fourier method strongly recommends selecting a dither pattern that

contains fractional o�sets as close to the ideal interlace pattern, itself. If a good dither pattern is

realized, little is demanded of the linear combination of the images | one is simply accounting for

the slight errors in its execution. It should be emphasized that the dither pattern can also contain

integer pixel o�sets as well, as might be desired to eliminate hot pixels, traps, blocked columns,

and other �xed detector defects as well as cosmic rays. A nearly ideal program for the present

algorithm would be to attempt a 2 � 2 subsampling interlace, but taking multiple exposures at

each dither step to allow for cosmic ray rejection. This strategy clearly demands a rather large

data-set, which may not be feasible for programs lasting only an orbit or two on HST. However,

it presents no di�culties for multi-orbit programs, where one will be obtaining a large number of

exposures in any case.

With regards to the second issue above, I have focused solely on the problem of reconstructing

a Nyquist-sampled image. Tasks that are required before this stage include image registration and

defect repair. Tasks that might follow reconstruction include geometric recti�cation, deconvolution,

and �ltering. Drizzle is attractive in part because it is a complete package that does many of
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these steps together within the familiar IRAF/STSDAS environment. This said, however, I

emphasize that many of the preliminary reduction steps can be done independently of the Fourier

reconstruction algorithm | these issues should not impede its use. Indeed, one might use Drizzle

for an initial reconstruction to provide for defect rejection prior to a second reconstruction cycle

using the present algorithm. Geometric recti�cation is simple in principle if one is working with

well-sampled images; the issue is generating such an image if geometric distortions are important

in the undersampled observations. As noted earlier, if the dithers are small, scale changes across

the image may be unimportant; if variations in the local dither step over the image domain are

limited to a few percent of a pixel, then the entire domain may be reconstructed, and then later

recti�ed. If the dither steps are large, however, the fractional pixel o�sets may vary signi�cantly

over the image, requiring the reconstruction to be done in subsets of the domain and later patched

together. This may be unattractive for some problems requiring panoramic imaging, but may

be irrelevant if the primary objects of interest are compact or occupy only small portions of the

images.

While the Fourier reconstruction method presented here works only for translational

dithers, in passing, I note that the professional image processing literature does contain

algorithms related to be present one that can combine undersampled images with more complex

geometric interrelationships. Granrath & Lersch (1998) present an algorithm that constructs

a Nyquist-sampled image from an image set whose members can be related to each other

with a�ne transformations, i. e., the geometric transformations that include rotation, scale

change, and shear, as well as simple translations. The Granrath & Lersch algorithm constructs

a \projection-onto-convex-sets" estimate that gives the best reproduction of the image set, in

contrast to the present method, which yields a closed-form solution to the Nyquist image. Methods

of this sort may be of interest in cases where the image does not meet the conditions required for

the present Fourier method, but precise treatment of the Nyquist-scale is still important.

In summary, the Fourier technique presented here may not be the �rst choice to construct

a Nyquist image when the geometrical relationships among the image set are complex, or the

dither pattern is strongly non-optimal. Further, its resolution gains may appear to be super�cially

modest. Regardless, there remains a class of HST imaging problems that push right against

the di�raction scale of the instrument. This class includes crowded �eld stellar photometry, the

nuclear structure of galaxies | particularly those with bright AGN, the morphology of lensed

QSOs, and so on. This method allows clean access to the Nyquist scale and should be of use for

these problems and more.

I wish to thank Bobby Hunt, Christoph Keller, and Ken Mighell for useful conversations.
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